

Boeing Finally Gets FAA Approval To Raise 737 MAX Production

VPM: Understanding Nickel Superalloys......4

* Due to the current environment surrounding tariff activity, please

* Due to the current environment surrounding tariff activity, please check with your UPM Sales Representative or contact sales@upmet. com for the latest information on surcharge updates.

Boeing has reportedly received approval from the United States Federal Aviation Administration (FAA) to increase production of the 737 MAX. According to a report by The Seattle Times, the American aircraft manufacturer will now be able to produce up to 42 jets per month.

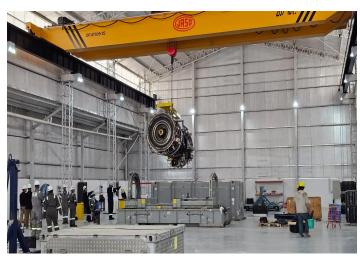
Previously, production of the Boeing 737 MAX was capped at 38 units per month by the FAA. The limit was introduced in early 2024 following an incident involving an Alaska Airlines Boeing 737 MAX 9, during which a door panel blew out mid-flight, revealing quality lapses at Boeing.

The news about the 737 MAX production rate increase suggests that the FAA believes Boeing has made significant improvements to its safety and manufacturing practices following the January 2024 737 MAX 9 incident, during which a door panel blew out mid-flight. The planned ramp-up is also viewed as a sign that Boeing's management is regaining control over its internal processes, a step that could help the company strengthen its financial position as

According to a report by Reuters, FAA Administrator Bryan Bedford called Boeing chief executive officer (CEO) Kelly Ortberg on October 17, 2025, to confirm that the company could increase production to 42 aircraft per month, a source familiar with the matter said. The FAA added that its direct oversight of Boeing will remain unchanged. In a statement seen by The Seattle Times, the FAA said: "FAA safety inspectors conducted extensive reviews of Boeing's production lines to ensure that this small production rate increase will be done safely."

The American plane maker is taking a cautious approach to increasing production of the Boeing 737 MAX. According to The Seattle Times, Boeing's CEO Kelly Ortberg told analysts that the company plans to raise output in steps of five aircraft at a time, with each increase subject to a safety and quality review by the

Boeing has produced 450 737 MAX aircraft per year, based on its monthly rate of 38 jets. This remains below the company's target of 50 per month, or roughly 600 aircraft annually. If the new rate of 42 jets per month is maintained throughout the year, Boeing would produce approximately 504 737 MAX aircraft each year.


However, Ortberg reportedly noted that the company anticipates roughly six months between each production rate increase. In fact, earlier media reports indicated that workers at Boeing's Seattle-area factories have been preparing for the higher 737 production rate by installing additional equipment to boost capacity. According to Bloomberg, Boeing is preparing to ramp up production again in April and once more toward the end of 2026. Combined, these planned increases could raise monthly output to around 53 aircraft by the end of next year, according to the report.

The vast majority of the global 737 MAX 8 and MAX 9 fleet has been in service since their debut in 2017 and 2018, respectively, except during the worldwide groundings that followed after the Lion Air and Ethiopian Airlines crashes, which were linked to the faulty MCAS system. To continue reading, please click here.

GE Vernova Opens Aeroderivative Repair Center in Argentina, Supports Latin America

GE Vernova recently opened and inaugurated a new aeroderivative-based Repair Service Center in the Parque Industrial Centenario, Neuquén Province, Argentina. The facility will initially offer LMS100 maintenance services, with plans to expand capabilities to LM2500 and LM6000 gas turbines by year-end 2026. As the company's first aeroderivative repair center in Latin America, the facility is expected to boost repair capabilities across Argentina, Brazil, Chile, and Uruguay.

"This project is aligned with GE Vernova's plans to expand its gas turbine repair capabilities globally," said Luis Leal, General Manager Aero Services Americas, Gas Power GE Vernova. "By applying lean practices and advanced repair technologies, our Repair Service Center in Centenario can set a new benchmark for repair excellence. The new facility will help us to better serve our customers and ensure that our legacy equipment remains competitive, while effectively addressing the support and maintenance needs throughout southern Latin America."

Providing local maintenance services will minimize import and export bottlenecks, which have historically affected turnaround times. Aeroderivative turbine owners will benefit from improved lead times and the quicker delivery of repaired components to support their outage needs. Now, these turbines will no longer require shipment to repair centers outside of Latin America, further reducing component delivery times.

In August 2025, GE Vernova announced plans to invest \$41 million in the Schenectady Center of Excellence for Steam and Generator, expanding generator, assembly, and testing capacities and adding up to 50 new positions to meet global demand. The investment will enhance manufacturing for GE Vernova's H65 and H84 generators, which are coupled with efficient HA gas turbines.

New York's Excelsior Jobs Program also granted \$1 million towards project completion. Since 2023, GE Vernova has invested over \$130 million in the Schenectady facility, including a \$50 million investment to build a new manufacturing line that created more than 200 new jobs. In January, the company announced an \$80 million investment for gas power and onshore wind work.

Also in August, GE Vernova announced more than a \$25 million investment to expand and modernize its gas turbine manufacturing and service center in Veresegyház, Hungary. Operating since 2001, the facility serves as GE Vernova's second-largest manufacturing base outside the United States. The expansion, supported by a \$7.7 million incentive package from the Hungarian Investment Promotion Agency, includes installation of new high-precision production equipment and solar panels aimed at boosting onsite energy self-sufficiency. To continue reading, please click here.

Global Titanium Market at Risk of Tightening as China-Russia Grip Persists

Titanium remains an essential element for the aerospace industry, which absorbs about half of the total global production of this lightweight metal.

And while this metal is typically not included among the so-called "rare earths" that are central to the ongoing strategic rivalry between the United States and China, securing its continued supply has long been a source of concern for Western aircraft manufacturers.

Back in July 2023 AeroTime explained how the Russian invasion of Ukraine and the subsequent sanctions had put the Titanium supply chain under strain, reinvigorated the titanium recycling market, and led to major consumers seeking alternative sources of this metal.

Two years on, let's take another look at the state of the titanium market. Have Western aircraft manufacturers shed their reliance on Russian and Chinese aerospace-grade titanium sponge? Has new processing capacity come on stream? And what are the prospects for the titanium market?

When it comes to titanium supply chain reliability, the biggest uncertainties may actually still lie ahead, according to Nils Backeberg, Founder and Director of Project Blue, a market intelligence and research firm specializing in mineral commodities.

Speaking with AeroTime from South Africa, Backeberg noted that the disruption created by the war in Ukraine has taken place at a time in which demand was still recovering from a relative historical low. "Even today, in 2025, we have barely recovered the prices of 2018," explained Backeberg, who attributed this to a number of factors which have slowed down titanium demand within the course of the last five to six years.

The technical issues experienced by some aircraft programs, such as the B737 MAX, the impact of the COVID-19 pandemic on the airline industry and, more recently, the supply chain constraints which have been felt across the industry, have all contributed to keeping aircraft production rates below their potential.

"With the Boeing MAX issues and COVID-19 we saw demand for titanium drop significantly, but more production ramped up, predominantly in China. So, we've actually been in a surplus market," Backeberg explained. "And this is despite the fact that the supply chain was disrupted due to the war in Ukraine. So, demand fell before supply and then, even if demand recovered in 2023-24, supply chain issues dampened that demand and it didn't come back as quickly as possible." To continue reading, please click here.

Air Force Offers Federal Land for Private-Sector Al Data Centers

In an unusual move to boost President Donald Trump's ambitious AI agenda, the Air Force is now offering to lease federal land to private companies seeking to build high-powered data centers.

This use of federal land was envisaged in Trump's Executive Order 14318, issued in July, which set out to speed up federal permitting for new Al data centers. But the Air Force announcement is the first concrete step towards that effort by the Defense Department.

Two-thirds of the land for lease is at the massive Edwards Air Force Base complex in California, the service's largest installation by land area and home to Air Force Materiel Command. All told, the Request For Lease Proposal (RFLP), issued Oct. 15 and added to on Oct. 21, makes available 3,101 acres of "underutilized" federal land at five active Air Force Bases across the country: 2,115 acres, divided amongst seven sites, at Edwards AFB; 300 acres at Davis-Monthan AFB in Arizona; 274 acres at

Arnold AFB in Tennessee; 219 acres at Robins AFB in Georgia; and 193 acres at Joint Base McGuire-Dix-Lakehurst in New Jersey.

Proposals are due Nov. 14 and must offer at least "fair market value" for the land, as required by federal law, as well as a one-time payment estimated at \$250,000 to cover the government's administrative expenses, the RFLP says. Bidders must show both strong financial backing and a track record of data center construction, with "at least three completed AI data center projects drawing over 100 MW [megawatts] of new contracted power that the Offeror has developed within the last 3 years."

The new project must itself draw at least 100 megawatts of power "dedicated to Al inference, training, simulation, or synthetic data generation." But it need not have any direct connection to national defense to count as a "qualifying project" under the executive order.

"The DAF [Department of the Air Force] selected these installations based on market analysis, infrastructure availability, and strategic importance," said a press release that was not officially published due to the government shutdown, but was made available to Breaking Defense. "The DAF may consider other opportunities in the future." The service expects to select winning proposals in January.

Trump has taken a personal interest in artificial intelligence. Just days after his inauguration, he held a White House press conference with OpenAl to announce the company's \$500 billion Stargate plan to build Al infrastructure. In July, the White House announced an ambitious Al Action Plan that gave broad-brush objectives to multiple federal agencies in what it framed as "a race to achieve global dominance in artificial intelligence" against China. To continue reading, please click here.

The Future of Aviation? Rolls-Royce Files Patent for Hydrogen Engine System

Propulsion technology has steadily evolved over the past century, starting from piston engines all the way to the present era of turbofan jet engines. But innovation is always taking place behind the scenes, and the industry could be on the cusp of introducing a new form of propulsion that uses hydrogen as its primary fuel source. While hydrogen engines have already been in development for years, they are still a long way off from being ready for widespread commercial use.

Leading enginemaker Rolls-Royce is pursuing its own hydrogen engine designs and recently patented a fuel system for a gas turbine engine configured to combust hydrogen fuel. This novel approach to hydrogen power could help solve one of the major problems of using liquid hydrogen as a fuel source, namely its extremely cold temperature. Rolls-Royce's idea is to use a fuel turbine to heat the hydrogen fuel before it reaches the engine, creating a more stable combustion process.

According to the patent filing, its new fuel system includes a main fuel conduit with a fuel pump "configured to operate on hydrogen within the fuel conduit to provide pressurized fuel to the core combustor of the gas turbine engine." It will also feature an auxiliary combustor, which will burn a portion of the hydrogen fuel to heat the remainder of the fuel. In other words, it will be a self-sustaining system that diverts a small amount of hydrogen from the main fuel conduit to pre-heat the fuel.

While hydrogen is theoretically one of the cleanest fuel sources, in practice, it is one of the most difficult to implement on an aircraft. This is because hydrogen requires a larger volume of storage compared to traditional jet fuel, posing major problems for aircraft design and airport infrastructure. Liquid hydrogen also needs to be stored at ultra-low temperatures and has a more volatile combustion process.

Rolls-Royce's proposed system would help solve both of these issues, providing a controlled and efficient fuel delivery architecture. While hydrogen fuel cells have shown much better practical feasibility, hydrogen combustion is a different story. Liquid hydrogen must be stored at -253°C, which means aircraft require insulated fuel tanks that can store it safely. But its lower density compared to jet fuel means these tanks will take up more space than conventional tanks, proving a headache for aircraft designers.

With years of rigorous development and testing still ahead, don't expect to see hydrogen fuel-powered systems on a large commercial aircraft any time soon. To continue reading, please click here.

United Performance Metals Focus

Specialty Plate Products at United Performance Metals

United Performance Metals carries a range of metal plate products to keep up with the ever-evolving market demand. To produce this plate, a steel slab is heated to hot rolling temperature and then pass it through rollers to flatten it to the desired thickness. The plate must also go through a leveling process to ensure flatness and dimensional accuracy. The material can be further manufactured to the desired size through several different cutting techniques.

As a general rule, the difference between sheet and plate metal is the thickness of the material. Sheet metal is typically less than 6 millimeters (1/4 inch) thick, is cut from a continuously rolled coil, and is measured in gauges. In contrast, plate metal is typically anything above 6 millimeters (1/4 inch) thick and is rolled as a single item. The thickness of a plate is measured in millimeters or inches. United Performance Metals does carry several grades of plate material in 0.1875" thickness, which is thinner than the standard plate. This diversifies UPM's inventory, giving us a competitive edge that provides flexibility for our customers.

Due to its strength and durability, plate metal has a wide range of applications that it is used for. A big sector for plate material is the oil, gas, and energy industry. Some of these applications include pressure vessels, pipelines, base plates, and structure

components. Plate metal is also used for defense structures and vehicles, as well as automotive and architectural applications.

UPM offers a comprehensive range of value-added plate processing solutions, including laser cutting, shearing, waterjet cutting, and cold saw cutting, ensuring the materials you receive meet all your specific requirements. Cutting speed, feed rate, and tool geometry significantly impact the surface finish. Polishing, grinding, or blasting can further refine the surface. These products are all fully certified and DFARS compliant.


With 4 grades of nickel, 5 grades of titanium, 10 grades of stainless steel, and 2 grades of PRODEC®, United Performance Metals has a wide range of plate material for a variety of applications. These materials vary in size range, spanning from 0.1875" all the way to 4.000". To learn more about UPM's full plate guide and to get a quote, please click here.

Understanding Nickel Superalloys

Superalloys are high-performance metals that are designed to withstand extreme temperatures and stress. They offer superior strength, creep resistance, and corrosion resistance compared to traditional alloys. Due to their strong nature, these materials are widely used in the aerospace, space, defense, and power generation industries

Waspaloy: Waspaloy is a nickel-based superalloy known for its exceptional strength and corrosion resistance, particularly at elevated temperatures. Due to its hardness, waspaloy alloys can be difficult to machine in any heat-treated condition. This product is commonly used in jet engine and gas turbine engine components, including compressors, discs, shafts, and casing. Additionally, waspaloy is used in aircraft fasteners and missile systems.

Hastelloy: Hastelloy is a family of nickel-based superalloys known for their exceptional corrosion resistance. Key chemical components to these alloys include nickel, chromium, and molybdenum, though the specific composition varies across each grade. Hastelloy is suitable for application in the aerospace, space, defense, oil and gas, chemical processing, and alternative energy industries. Due to their high strength in harsh environments, these alloys are commonly used for chemical reactors, heat exchangers, and marine systems.

Inconel: Inconel products are nickel-chromium based superalloys that offer high strength, toughness, and exceptional resistance to corrosion and heat in extreme environments. Due to these factors, this material is often used in aerospace, space, defense, oil & gas, power generation, and chemical processing industries. Some of the most common applications include engine components, blades, discs, rotor bolts, ducts, and heat exchangers. Inconel products can be produced in a variety of forms due its excellent weldability and fabrication characteristics.

While these materials are all nickel-based alloys, each material excels in a different environments, so it is important to understand which areas and industries are best for each product. Waspaloy is best for high-temperature and strength applications such as engine turbines. Hastelloy is best to use in environments where corrosion resistance is important, making it a great fit for chemical processing and marine systems where the material will likely be in harsh environments. Inconel grades are well-rounded alloys that offer a mix of high temperature strength and oxidation resistance. These alloys are recommended for aerospace, power generation, and heat exchanger applications. To view UPM's full list of nickel alloys, please click here.