

PRODEC® TYPE 304/304L AMS 5511 / 5513

PRODEC[®] 304/304L is an improved machinability version of standard Type 304/304L austenitic stainless steel. With advanced ladle metallurgy techniques during melting, the steel is processed for improved machinability and outstanding uniformity offering the end user with Production Economy (PRODEC). PRODEC 304/304L offers faster machining speeds, longer tool life, improved part surface quality, and lower total cost of machined parts. The basic austenitic stainless steel, a versatile corrosion resistant material for general purpose applications. PRODEC is a registered trademark of New Castle Stainless Plate LLC.

Nominal Composition %

- С
- Carbon 0.030 max
- Mn Manganese 2.00 max
- P Phosphorous 0.045 max
- Sulfur 0.030 max
- si Silicon 0.75 max
- Cr Chromium 18.0 20.0
- Ni Nickel 11.0 15.0
- Mo Molybdenum 3.0 4.0
- N* Nitrogen 0.10 max

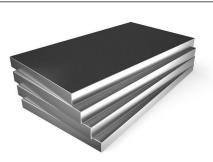
Percent by weight, maximum unless a range is listed. *Flat rolled product online

Dual Certification

It is common for PRODEC 304L to be dual certified as 304 and 304L when the material meets both the lower carbon limit of Type 304L and the slightly higher strengths of Type 304. The producer of the steel must certify the material as Type 304 if it is to be used as Type 304 instead of Type 304L.

Standard Inventory Specifications

- UNS: \$30403
- AMS: 5511, 5513
- ASTM: A 240


PRODEC 304/304L can be supplied to meet AMS, ASTM, ASME, QQS, and MIL-S specifications as standard Type 304/304L.

Forms & Thicknesses Stocked

• Plate - 0.1875" - 3.500"

Applications

- General purpose applications and environments
- Corrosion resistant machined parts
- Water Treatment

Call 1.888.282.3292

Or click here to view our product page and request a quote on Prodec 304/304L

Features

- Good corrosion resistance
- High ductility and formability
- Excellent impact toughness even at cryogenic temperatures
- Good workability and weldability
- Excellent machinability

Resistance to Corrosion: Type 304/304L is a versatile, general purpose stainless steel with good resistance to atmospheric corrosion, many organic and inorganic chemicals, and to foods and beverages. It has been used in high vacuum processing equipment and specialized instruments where high integrity is essential.

Although improvements in machinability in the past have been associated with reduced corrosion resistance, PRODEC 304/304L has been shown to have corrosion resistance within the range typically expected of Type 304L stainless steel. Because of its low carbon content, PRODEC 304/304L retains good corrosion resistance in the as-welded condition.

Machinability

PRODEC 304/304L is melted to a closely controlled chemistry and ladle-treated to achieve control of the composition, amount, size, shape, and distribution of the nonmetallic inclusions (sulfides and oxides) normally occurring within a standard stainless steel. These inclusions provide for chip breaking and for reduced wear of carbide tooling at high machining speeds. PRODEC 304/304L permits higher machining speeds, longer tool life, and superior part quality with reduced total cost for finished parts.

The following tables give some speeds and feeds obtained in tests for PRODEC 304/304L, providing guidelines for possible adaptation to particular machining programs. The data provided are based on achieving tool lives of 15 minutes for cemented carbides and 60 minutes for high speed tool steels.

Turning (Table 1)

		Cutting spee	Cutting speed, sfm					
Feed (in/rev)	Cutting depth (in)	C7	C6	C5	High speed Steel			
<0.012	0.08	780	620	-	95			
0.012-0.020	0.08-0.20	-	560	460	80			
0.020-0.040	0.20-0.40	-	295	260	50			

Threading (Table 2)

ТооІ	Speed (sfm)
Cemented Carbide (C6-C5)	295-425
High Speed Steel	50-65

Reaming (Table 3)

Ream diameter (in)	Cutting Speed (sfm)						
	Cemented Carbide	High Speed Steel	Feed (in/rev)				
< 0.40	165	33-50	0.004-0.008				
0.40 - 0.80	165	33-50	0.012				
> 0.80	165	33-50	0.012-0.016				

Cut Off (Table 4)

ТооІ	Speed (sfm)	Feed (in/rev)
Cemented Carbide (C6-C5)	330-490	0.004-0.008
High Speed Steel	80	0.002

Drilling - High Speed Steel Twist Drills (Table 5)

Drill diameter (in)	Speed		Feed
	Rpm	fm	(in/rev)
0.04	3200-3800	33-38	0.002
0.12	1600-1800	50-67	0.004
0.20	1080-1270	57-66	0.008
0.40	540-640	57-66	0.012
0.60	360-430	57-66	0.014
0.80	370-320	57-66	0.016
1.20	180-220	57-66	0.018

Notes:

- 1. Cutting Fluid: Ample flow of 10% emulsion coolant.
- 2. With short NC drills, feed can be increased about 40%
- 3. When hole depths exceeds 4x diameter, clear chips from hole.
- 4. With TiN-Coated HSS drills, speed can be increased 10%
- 5. For rotating drill and fixed workpiece, as in drilling a hole in a plate, the maximum speed should not exceed 50 sfm.

Drilling - Indexable insert drills, cemented carbides (Table 6)

Drill diameter	Speed Feed		Type of Carbide			
(in)	sfm (in/rev)	Center	Periphery			
0.80	655-820	0.004	C6	C7		
1.20	655-820	0.005	C6	C7		
1.60	655-820	0.006	C6	C7		
2.00	655-820	0.008	C6	C7		

Notes:

Cutting Fluid - Pressure: > 44 psi; Amount: > 6.5 gal/min

Cutting data for indexable insert drills are highly dependent on the make of drill; the manufacturer's recommendations should be considered.

Mechanical Properties at Room Temperature (Table 7)

Property	Cutting Speed (sfm)	ASTM			
	Cemented Carbide	304	304L		
Ultimate Tensile Strength	99 ksi	75 min	70 min		
0.2% Offset Yield Strength	48 ksi	30 min	25 min		
Elongation in 2 inches	52	40	40		
Reduction in Area	61%	-			
Hardness, Rockwell *0.375 inch plate	85B	96 max	92 max		

Physical Properties (Table 8)

Properties	Value
Density	0.285 lb/in ³
Modulus of Elasticity	29 x 10 ⁶
Coefficient of Thermal Expansion	8.9 x 10 ⁻⁶ 68-212°F, /°F
Thermal Conductivity	8.7 Btu/ft hr °F
Heat Capacity	0.12 Btu/lb °F
Electrical Resistivity	33.5 x 10 ⁻⁶ Ω-inch

Milling (Table 10)

Operation	Cemented Carl	oide	High Speed steel		
	Speed (sfm)	Feed (in/tooth)	Type of carbide	Speed (sfm)	Feed (in/tooth)
Face Milling	490-820	0.006-0.012	C7-C6	80-100	0.005-0.008
Side Milling	590-790	0.010-0.012	C7-C6	80-100	0.005-0.008
End Milling	490-720	0.004-0.008	C7-C6	80-100	0.001-0.006
End Milling (Solid cemented carbide)	165-330	0.002-0.008	C5	-	-

Heat treatment

Annealing: PRODEC 304/304L should be heated to 1900°F minimum and water quenched or rapidly cooled by other means. PRODEC 304/304L cannot be hardened by heat treatment.

Workability

Cold Working: PRODEC 304/304L is readily formed and fabricated through a full range of cold working operations. It can be used in heading, drawing, bending, and upsetting. Any cold working operations will increase the strength and hardness of the material, and may leave it slightly magnetic.

Hot working: PRODEC 304/304L can be forged in the 1700-2200°F range. For maximum corrosion resistance, forgings should be annealed at 1900°F minimum and water quenched or rapidly cooled by other means after hot working operations.

Welding

PRODEC 304/304L is readily welded by a full range of conventional welding procedures (except oxyacetylene). AWS E308L/ER308L filler metals should be used with PRODEC 304/304L steel, but the molybdenum containing austenitic stainless steel filler metals may also be considered.

Lowest Temperature (F) at Which the Corrosion Rate Exceeds 5 mpy (Table 11)

Corrosion Environment	654 SMO	254 SMO	904L	Type 316L (2.7 Mo)	Туре 304	Outokumpu 2507	2205 Code Plus Two	Outokumpu 2304
0.2% Hydrochloric Acid	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling
1% Hydrochloric Acid	203	158	122	86	86p	>Boiling	185	131
10% Sulfuric Acid	158	140	140	122	_	167	140	149
60% Sulfuric Acid	104	104	185	<54	_	<57	<59	<<55
96% Sulfuric Acid	86	68	95	113	_	86	77	59
85% Phosphoric Acid	194	230	248	203	176	203	194	203
10% Nitric Acid	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling
65% Nitric Acid	221	212	212	212	212	230	221	203
80% Acetic Acid	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling
50% Formic Acid	158	212	212p	104	≤50	194	194	59
50% Sodium Hydroxide	275	239	Boiling	194	185	230	194	203
83% Phosphoric Acid + 2% Hydroflouric Acid	185	194	248	149	113	140	122	95
60% Nitric Acid + 2% Hydrochloric Acid	>140	140	>140	>140	>140	>140	>140	>140
50% Acetic Acid + 50% Acetic Anhydride	>Boiling	>Boiling	>Boiling	248	>Boiling	230	212	194
1% Hydrochloric Acid + 0.3% Ferric Chloride	>Boiling, p	203ps	140ps	77p	68p	203ps	113ps	68p
10% Sulfuric Acid + 2000ppm Cl ⁻ +N2	149	104	131	77	-	122	95	<55
10% Sulfuric Acid + 2000ppm Cl ⁻ + S02	167	140	122	<<59p	-	104	<59	<<50
WPA1, High Cl ⁻ Content	203	176	122	≤50	<<50	203	113	86
WPA2, High F ⁻ Content	176	140	95	≤50	<<50	167	140	95

ps = pitting can occur

ps = pitting/crevice corrosion can occur

WPA	P ₂ O ₅	CL [.]	F	H ₂ SO ₄	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	CaO	MgO
1	54	0.20	0.50	4.0	0.30	0.20	0.10	0.20	0.70
2	54	0.02	2.0	4.0	0.30	0.20	0.10	0.20	0.70